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.?bstract - The influence of spatial confinement of reactants in organized 
liquid media leads to kinetic rate laws which differ from those discussed 
in homogeneous solution. We consider in this paper how reactivity corre- 
lates with different microstructures such as micellar aggregates and 
colloidal semiconductors. Strategies are outlined to design systems 
which achieve high reaction rates and product yields as well as selecti- 
vity. The kinetics models are tested by Monte Carlo simulations and 
compared to experimental results. 

INTRODUCTION 

Recently, there has been a surge oc interest in the reactivity in organized liquid media. 
1 

A wide variety of organized assemblies such as cyclodextrins. micelles, microemulsions and ve- 

sicles are presently employed as hosts in numerous chemical reactions. An important goal of 

these studies is to correlate reactivity with these different types of microstructures. In many 

cases the role of the host aggregate is simply to solubilize the reactant species which are 

insoluble in the bulk solvent. !4ore recently, the quest for high reaction rates and efficiency 

has led to the application of molecular engineering to optimise the performance of these systems. 

For example, functional surfactants display cooperative effects and rate enhancements approaching 

enzyme catalysis have been achieved with such assemblies. Another new research front is that of 

colloidal semiconductors. 
2 

Here, the very rapid nature of charge carrier motion within the 

assembly and the large ratio of surface to bulk atoms can be exploited to improve the yield of 

heterogeneous redox reactions. 

In this paper we examine the effect of spatial confinement of the reactants on the kinetics 

of bimolecular processes in organized assemblies. It is shown that for fast reactions the con- 

ventional rate laws established for homogeneous solutions cannot be applied. Monte Carlo 

simulations are presented which allow to unravel the nature of diffusion controlled processes in 

confined reaction space. The results which emerge from these considerations are useful to model 

experimental results and should provide incentives to elaborate strategies for designing systems 

with improved reaction efficiency and selectivity. 

DIFFUSION MBDIATBD REACTIONS IN 
CGMPARTIMENIALIZBD SYSTRl4S 

We consider the irreversible bimolecular process 

A + B ,+ products (1) 

and address the question how the sequestering of the reactants in a host aggregrate will affect 
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the reaction kinetics. In homogeneous solution the differential rate law is: 

_ d 
CA 

dt - kz cA “B 

-1 -1 
The reaction order is 2 and k2 has the units M 3 -1 

s , or alternatively cm S if concentrations are 

expressed in units of molecules/cm 
3 

. We shall now explore the kinetic consequences of confining 

the reactants within an ensemble of small spheres such as a micelle or a aicroemulsion droplet. 

We first consider the case where the reaction volume, a sphere of radius R, contains only two 

reactive molecules: A and B. Figure 1. The reactants are assumed to be hard spheres of radii 

FIGURE 1 
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moving with the diffusion constants D 

A 
and D B respectively. They are initially randomly 

distributed throughout the volume of the sphere. We shall restrict our considerations in the 

following to cases where the reaction is diffusion controlled and hence occurs upon the first 

encounter of A and B. The model is, however, extendable to slower reactions by introducing a 

probability factor corresponding to the reciprocal of the average number of collisions which are 

required to occur between A and B before the chemical transformation takes place. Furthermore, 

when discussing the effects of confinement on chemical kinetics it is implied that the reaction 

time is much shorter than the time required for exchanging the reactants between different host aggre- 

gates. In situations where the opposite is true, i.e. the exchange is much faster than the re- 

action, there are no compartimentalization effects to be expected and the kinetics follow the 

same rate law as in homogeneous solution. 

The goal of our present analysis is to derive the time law for the disappearance of A - B 

pairs, sequestered in very small spherical reaction volumes, due to the bimolecular reaction (1). 

The quantitiy of interest is E (t), the probability that the A - B pair has not reacted at time t. 

Unfortunately, it is impossible to derive an analytical expression which would allow for the 

calculation of this survival possibility. The problem can. however, be solved analytically3 if it 

is assumed that one of the reactants, say A, is imobilized in the center of the sphere while the 

other undergoes random motion. One obtains in such a case: 
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n- m 

E(t) - 1 c 
n- 1 

n 
exp (-Xn2DBtho2) 

where r 
0 

- R-rB and the values of X, are roots of the equation: 

Xn cotg ((1 - d/ro)Xn) * 1 

1681 

(3) 

(4) 

The coefficients of this series are given by the expression: 

“i;_ ” L-j) x: (l - ” 5)) t5) 

where d = rA + rB. 

Equation (3) has been discussed in connection with intramicellar electron- and energy transfer 

reactions. 
3 

If the radius of the micelle is significantly larger than that of the reactants, Cn 

approaches the value 1 and E(t) follows a simple exponential time law given by the first member 

of the series expansion in equation (3), i.e. 

E(t) = exp (- X2DBt/ro2) 

In other words, the intramicellar reaction between single A .**B pairs is predicted to follow to a 

good approximation a first order process, the concentration of reactants decreasing in an exponen- 

tial fashion with time: 

cA - I 

“0 
E(t) - exp (-kit) 

LA 

Since kl 
-1 

is a first order rate constant, it is expressed in units of s . The value of kl represents 

the reciprocal average time for the reaction between a single pair of molecular solubilized in the 

micelle. 

We conclude that the rate law for a bimolecular reaction involving single pairs in host aggregates is 

different from that observed for the same process in homogeneous solution. The effect of sequeste- 

ring the reactants is to reduce the reaction order from 2 to 1. This is a consequence of the fact 

that in the compartimentalized systems the reaction volume is confined by the host aggregate whose 

interface with the bulk solvent represents a reflective boundary for the reactive species, limiting 

their diffusion and maintaining them in close proximity. 

How can these proximity effects be exploited in order to optimize reaction rates? In order to 

answer this question one has to know how the size of the host aggregate affects the rate constant. 

Consider again the case of a reaction between two reactants A and B sequestered in a sphere of 

radius R as outlined in Figure (1). Our goal is to derive a relation between the size of the micro- 

sphere and the rate constant k 1 of the reaction. 

We first employ the analytical solution given by Equation (3) where we have assumed that the 

reactant A is immobilized in the center of the sphere. Assuming furthermore that the size of the 

host aggregate is significantly larger than that of the reactants, Equation (7) can be applied 

which gives for the first order rate constant the expression: 
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kl 
- XiDlro2 (8) 

The next step is to find the value of Xl which is the first root of the transcendental equation (4). 

We can rewrite this equation as: 

t&ccl - Y) X1) - x1 (9) 

where y - d/r 
0. 

Developing (9) in a Taylor series and keeping the first and second terms gives: 

2 
x1 = 3Y(l - Y)3 (10) 

and therefore 

kl - 
3dD 

(r - d)3 (11) 
0 

where D is the sum of the diffusion coefficient of A and B. Equation (11) shows that kl increases 

as the radius of the sphere decreases. In other words, the smaller the size of the host aggregate 

the larger will be the value of the rate constant. It may be argued that a size independent rate 

constant would be obtained if the value of k 
1 

is multiplied by the volume of the sphere. That 

this is not the case is evident from equation (11). Multiplying this expression by the volume 

gives: 
4lIdD.r 3 

k2 - 
0 

(r. - d) 
3 (12) 

where k 
3 -1 

2 
has the units cm s , and formally corresponds to a second order rate constant. Clearly, 

k2 is also a function of the radius of the host aggregate. Only for very large reaction volumes 

does the size dependency of k2 vanish. This is illustrated by considering the limiting value of 

k2 for r,+ m: 

lim kg = lim 4lldD 

(1 - d/ro)3 

- 4XdD (13) 

r,+ - r,+ m 

which yields the well known Smoluchowsky expression for diffusion controlled second order reactions 

in homogeneous media. 

Several important conclusions can already be drawn from this approximate model. Care needs 

to be applied when comparing the kinetics of homogeneous second order reactions to processes in- 

volving pairs of reactants sequestered in host aggregates such as spherical micelles. In the 

latter case, the process follows a first order rate law. (Significant deviations from first 

order kinetics are expected only for conditions where the size of the micelle is commensurate 

with that of the reactants.) Description of intramicellar processes in terms of second order 

kinetics is inadequate in situations where the exchange of reactants between different micelles 

is slow compared to the reaction. In such a case the first order rate constant kl should be 

used for the kinetic description of the process. If kl is multiplied with the micellar volume 

one obtains the parameter k2 which formally corresponds to a second order rate constant. In 

order to assess specific effects of the micellar microenvironment on the kinetics of a particular 

reaction, one might be tempted to compare kg with the rate constant for the same bimolecular 

process in homogeneous solution. If such a comparison is made the effect of micellar size on k2 

needs to be taken into account. 

The model we have employed until now was based on the assumption that one of the reactants 

is immobilized in the center of the spherical reaction space. It is desirable to analyse the 

more realistic conditions where both reactants move freely within the host aggregate. Since there 

is no direct analytical solution to this problem we have performed numerical calculations using a 

Monte Carlo program. The movement of the two reactants is simulated by a random walk with a 

fixed step length Al the average time required for each successive step is At and the diffusion 

coefficient is given by the relation: 
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2 
IO* (14) 

For simplicity we assume that the two reactants A and B have the same size and diffusion coeffi- 

cient. The results of these calculations show that the survival probability of the A..B pairs 

decreases in an exponential fashion with time except in the very beginning of the reaction where 

the In E(t) plot is nonlinear. 
4 

The extent of nonlinearity depends on the reaction parameters, 

i.e. the diffusion coefficient and the ratio d/r 
0. 

Qualitatively, these results agree with the 

analytical solution of the approximate model discussed above. However, there are significant 

quantitative discrepancies between the two models, in particular with regard to the effect of 

the size of the reaction volume on the rate constant k 
1’ 

We shall now discuss the concrete case 

of intramicellar triplet annihilatiovh in order to exemplify these differences. 

Fast Intramicellar Reactions, Experimental Results and Monte Carlo Simulations 

A large number of intramicellar reactions, including lrrminescence quenching, energy-and 

electron transfer as well as radical recombination processes occur on a time scale which is fast 

compared to intermicellar exchange of solubilisate molecules. These systems are therefore ade- 

quate to study the effects of compartimentalisation on the reaction kinetics. Overwhelming 

experimental evidence has confirmed that intramicellar processes involving a pair of reactants 

do indeed follow a first order rate law.6 However, so far there has been no attempt to assess 

the influence of the micellar radius on the reaction rate constant k 
1’ 

We shall now consider 

the example of an intramicellar triplet annihilation reaction in order to analyse these size 

effects and to compare the prediction of the two models presented in the preceding section. 

A schematic illustration of such a process is shown in Figure 2. 

FIGURE 2 

Intramicellar triplet annihilation 
involving a pair of reactants 

TRIPLET-TRIPLET 

ANNIHILATION 
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A case which has been studied experimentally in great detail is that of l-bromonaphthnlene in 

cetyltrimethylamonium bromide micelles (CTAB)5. The rate constant for the intramicellar triplet- 

triplet annihilation reaction is k 
7 -1 

1 
- 2.8 x lo 8 . Inserting this kl value in equation (11) 

together with the micellar radius of 228 and an interaction distance of d - 7.41. determined 

from a geometric model of the bromonaphthalene molecule , one derives a diffusion coefficient 
-7 2 -1 

for bromonaphthalene of D m 1.5 x 10 cm s . Inserting this value in the Stokes-Einstein 

equation 

32 -7% (15) 

gives for the microviscosity present in the interior of CTAB micelles a value of 40 cp. This is 

higher than the%values determined from fluorescence depolarisation measurements which for CTAB 

range between 15 and 30 cp. 

For comparison, the triplet-triplet annihilation process was simulated by Monte-Carlo calcu- 

lations. Each random walk consisted of ca.105 steps and was repeated 2500 times. Details will 

be given elsewhere4. 
-7 2 -1 

A diffusion coefficient of D - 4.7 x 10 cm s gave optimal agreement 
7 -1 

with the experimentally determined rate constant of 2.8 x 10 s . This corresponds to a micro- 

viscosity of 13.6 cp in good agreement with the experimental results. 

Using the diffusion coefficient 4.7 x 10 
-7 2 -1 

cm s and the interaction diameter of 7.4x we 

have performed Xonte Carlo calculations to determine the effect of micellar radius on the rate 

constant k 
1’ 

The results plotted in a semilogarithmic fashion in Figure 3 show that the rate 

constant increases sharply with decreasing size of the micelle reaching a value of 10 
9 -1 

s when 

the radius of the aggregate is 108. The effects predicted by the approximate model are even 

Effect of micellar radius on the rate of a diffusion 

controlled intramicellar reaction, the results obtained 
from Monte Carol0 simulations are juxtaposed to the 
approximate analytical solution, eq. 11 where A is 

assumed to be located in the center of the sphere. 

<- A centered 

random walk 

20 30 40 50 

R (AngstrSms) 

more pronounced, particularly at small micellar radii where the reaction halftimes are in the pico- 

second domain. Figure 3 is illustrative in that it clearly demonstrates the consequence of iwo- 

bilizing one of the reactants within the reaction spa+:. 
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Charge Carrier Trapping and Recombination in Colloidal Semiconductor Particles 

So far we have restricted our considerations to the case where only one reactant pair was 

present in the host aggregate. We shall naw analyse a situation where the number of pairs exceed 

one. An illustrative example is that of electron-hole recombination in colloidal semiconductors. 

These studies were carried out with colloidal titanium dioxide (anatase) particles having a 

diameter of 120 2. Irradiation of such colloidal solutions in the presence of a hole scavenger 

such as polyvinyl alcohol or formate ions results in the accumulation of electrons in the parti- 

cles. As a result, the solution assumes a beautiful blue color under illumination. It was found 

that up to 300 electrons can be stored in one Ti02 particle. (A Ti02 particle of 120 2 size has 

about 3600 conduction band states. Therefore. at most 10% of the available states are occupied 

by electrons.) The absorption spectrum of these stored electrons is shown in Figure 4: 

FIGURE 4 

Absorption spectrum of conduction band 

0’ ’ I I 1 I 

500 

The electron spectrum was found to be sensitive to the pH of the solution. Under alkiline condi- 

tions the electron absorption is very broad and has a maximum around 800 nm. Lowering the pH to 

3 produced a pronounced blue shift in the spectrum which under these conditions shows a peak at 

700 

WAVELENGTH ( nm > 

1100 

620 nm. The sensitivity of the electron absorption to the solution pH would indicate that they 

are located in the surface region of the particles. This has been confirmed by recent ESR experi- 

ments which show that under acidic conditions the electrons are trapped at the TiO surface in 

the form of Ti3* ions’. 
2 

Using redox titration, we have recently been able to determine the ex- 

tinction coefficient of the trapped electrons 
a . For the colloidal solutions of pH 3 the ex- 

tinction coefficient at 600 nm is 1200 M-‘cm 
-1 . 

Taking advantage of the characteristic optical absorption of trapped electrons in the colloi- 

dal Ti02 particles, we have recorded their recombination with free and trapped holes in the pico- 

second to microsecond domain 
9 

. Figure 5 shows the temporal evolution of the transient spectrum 

after excitation of TiO 
2 

with a frequency tripled (353 nm) Nd laser pulse of ca. 40 ps duration. 
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PICURE 5 

Transient spectrum observed at various time intervals after picosecond 
excitation of colloidal TiO . Conditions: [TiO ] - 17 g/l, pH 2.7, 
AT saturated solution, opti al pathlength 0.2 &I, Average number of *iE 

electron-hole pairs present initiaIly in one Ti02 particle is 67. 

400 SO0 60Q 700 

WAVELENGTH ( nm 1 

In Pigure 5 the spectrum of the trapped sleetron develops within the leading edge of the laser 

pulse indicating that the trapping time of the electron is less than 40 pa. Subsequently, the 

electron absorption decays due to recombination with valence band holes. 

TiC2(e;r + h+) k, Ti.02 (16) 

where k is expressed in s -1 in analogy to the intramieellar processes. We have conceived a sto- 

chastic model to analyze the kinetics of this reaction. Since the recombination takes place 

between a restricted number of charge carriers restricted to the minute reaction space of a 120 g 

sized colloidal TiO2 particle , it cannot be treated by conventional homogeneous solution kinetics, 

The time differential of the probability that a particle contains x electron-hole pairs at time t 

is given by: 

dF~~t)/dt = k(x+lj* P&t.) - kx2 Px (t) 
(17) 

where x - O,l,Z, *.. Equation (17) is only valid if the recombination between single electron- 

hole pairs is a first order event. That this is a valid assumption was shoun in the previous para- 

graphs. This system of differential equations is to be solved subject to the condition that the 

initial distribution of electron-hole pairs over the particles fotlows Poisson statistics. The 

average nuamer of pairs present at time t, <x’ (t), can be calculated by means of the generating 

function technique (8, 9f yielding: 
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<w> (t) = r. 
n=l 

cn exp( -n2kt) 

1687 

(18) 

where 

(19) 

The parameter <x>~ is the average number of pairs present at t - 0. 

Two limiting cases of equation (18) are particularly relevant: when <x>o is very small, 

equation (18) becomes a simple exponential and the electron-hole recombination follows a first 

order rate law. Conversely, at high average initial occupancy of the semiconductor particles by 

electron-hole pairs, i.e. <x> 
0 

> 30, equation (18) approximates to a second order rate equation. 

<x> 
<x> (t) I 

0 

I+<x>~ kt (20) 

In Figure 3 the initial concentration of electron-hole pairs was sufficiently high to allow 

for evaluation of the recombination process by the second order rate equation, equation (20). The 

analysis gives for kl the value 3 x 
7 -1 

10 s corresponding to a lifetime of ca. 30 ns for a single 

electron-hole pair in a colloidal TiO particle. 

particles, which is 9 x 10 
-19 -3 2 

Multiplication of kl with the volume of the TiO2 

cm , gives the second order rate coefficient k 
2 

= 3.0 x 10-11cm3s-l, 

as expressed in the conventional units R 
10 -1 -1 

= 
2 

1.8x10 H s . 

Chemical reactivity can be controlled by organised assemblies that act as hosts for the re- 

actant molecules. We have given here a few examples which illustrate the effects of reactant 

confinement on simple biomolecular processes. It is shown that the kinetic equations established 

for homogeneous media are no longer applicable if the reactants are sequestered in a reaction space 

of minute dimensions. New rate laws are derived which are adequate for the description of such 

processes. Moreover the interaction of reactive species in confined space is simulated by Monte 

Carlo calculations. We have restricted the scope of the present discussion to a few illustra- 

tive examples from our own research. Similar situations are encountered in a variety of other 

systems, such as the time evolution of products in solid state photochemical reactions. 11 
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